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The Effect of a Coriolis Force on 
Taylor-Couette Flow 

Richard J. Wiener, 1 Phi l ip  W. H a m m e r ,  I Char les  E. Swanson,  1 
David C. Samuels ,  1 and  Russell  J .  Donne l ly  1 

Taylor-Couette flow subject to a Coriolis force is studied experimentally and 
numerically. In the experiment, the Couette apparatus is mounted on a 
turntable with the axis of the cylinders orthogonal to the rotation vector of the 
turntable. The Coriolis force stabilizes the fluid against the onset of Taylor 
vortices and alters the velocity fields, both above and below the transition from 
the initial flow. At small dimensionless turntable frequencies s the transition 
yields time-independent Taylor vortices which are tilted with respect to the 
cylinder axis. At larger f2 there is a direct transition to turbulence. We deter- 
mine the first-order correction to the classical Couette initial flow, to account 
for the effects of the Coriolis force, by expanding in powers of s We present 
numerical results for the axial velocity (the only nonvanishing correction term 
to order g2) in the infinite-cylinder approximation. 

KEY WORDS: Taylor-Couette flow; Coriolis force; onset of instability; 
direct transition to turbulence; tilted Taylor vortex flow; Navier-Stokes 
equation in a rotating reference frame. 

1. I N T R O D U C T I O N  

Coriol is  effects occur  widely in na tu re ,  a n d  often p lay  a crucia l  role in the 
d y n a m i c s  of f luid flows. F o r  ins tance ,  the Cor io l is  force which  arises f rom 
the ear th ' s  r o t a t i o n  p r o f o u n d l y  impac t s  a t m o s p h e r i c  flows, (1) a n d  ro t a t i ng  
convec t ive  sys tems d i sp lay  s ignif icant  Cor io l i s  effects. (2 7) O n e  s t ra tegy to 
ga in  ins igh t  in to  the bas ic  fluid d y n a m i c s  resu l t ing  f rom this force is to 
inves t iga te  its effects on  s imple  h y d r o d y n a m i c  systems with wel l -def ined 
geomet r ies  a n d  con t ro l  pa ramete r s .  In  the cu r ren t  i nves t iga t ion  we are 
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exploring the effect of a Coriolis force on Taylor Couette flow, which is the 
flow of fluid between concentric rotating cylinders. (8) 

The Coriolis force is applied by mounting a Couette apparatus on a 
turntable with the axis of the cylinders orthogonal to the rotation vector of 
the turntable. (9) This orientation is chosen instead of aligning the axis of 
the cylinders parallel to the table rotation vector, since we believe that the 
latter arrangement simply adds the angular frequency of the turntable to 
the angular frequencies of the cylinders, which does not differ from 
ordinary Taylor-Couette flow. The centrifugal force does not affect the 
dynamics of the system, since it is balanced by an adverse pressure 
gradient. (~) We discuss this point in greater detail in Section 4. 

One advantage of introducing a Coriolis force into a system, beyond 
gaining understanding into its effects, is the addition of a second control 
parameter. Additional parameters are intrinsically interesting in that they 
may influence the onset of instability and lead to new dynamical behavior 
such as the Ktippers-Lortz instability (sl or pattern formation near a 
codimension-2 point (see, e.g., ref. 10). In our experiment the outer cylinder 
is held fixed. Thus there are two control parameters, the angular frequency 
of the inner cylinder and the angular frequency of the turntable. The former 
is scaled by the Reynolds number Re=coRld/v, where co is the angular 
frequency of the inner cylinder, d =  R2 - R~ is the gap size, R1 and R 2 are 
the inner and outer cylinder radii, and v is the kinematic viscosity. DD, the 
angular frequency of the turntable, is scaled by the dimensionless rotation 
rate, ~==Qod2/v. Here f2 is the inverse of the Ekman number I~) and 
indicates the ratio of the Coriolis force to the viscous force. 

In the geostrophic limit, where the inertial and viscous forces are small 
compared to the Coriolis force, the Taylor-Proudman theorem shows that 
the flow cannot change its velocity in the direction parallel to the rotation 
vector of the turntable. ~ But the onset of Taylor vortices requires such 
changes in velocity. This limiting case suggests that the Coriolis force 
should stabilize the fluid against the onset of Taylor vortices, in the sense 
that the fluid must be driven harder (i.e., the Reynolds number must be 
greater) for the transition to occur. The data confirm this qualitative 
behavior. (91 

In this paper we discuss qualitative and quantitative experimental 
results, with specific emphasis on the stability of the initial flow. We also 
discuss some of the changes the Coriolis force induces in the flow fields. In 
particular, the Coriolis force perturbs the Taylor vortices, and at high f2 
there is a direct transition to turbulence from the initial flow. 

Linear stability analysis is one method to calculate the stability of the 
initial flow. (2) However, the Coriolis force breaks the azimuthal symmetry 
of the classical Couette initial flow. The broken symmetry complicates the 
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stability analysis. We derive the first-order approximation to the equations 
for the initial flow and numerically solve these equations, as a first step 
toward a linear stability analysis. 

2. E X P E R I M E N T A L  S E T U P  

We use a Couette apparatus with an outer-cylinder radius R2 equal to 
2.54 cm. Most data points were collected with the radius ratio r/= RJR2 
equal to 0.883. Some work was done with t /= 0.950, in order to investigate 
radius ratio effects. The aspect ratio F =  L/d, where L is the length of the 
annulus, is 70 for data taken with r/= 0.883 and 167 for those taken with 
r/= 0.950. 

The working fluid is an aqueous glycerol solution, seeded with 2% 
Kalliroscope and 1% stabilizer, by volume. Different concentrations of 
glycerol and water were used to vary the kinematic viscosity over an order 
of magnitude, from approximately 0.011 to 0.11 Stokes. Details of the 
determination of v and temperature control are included in ref. 9. 

Kalliroscope is a nearly neutrally buoyant tracer, composed of 
platelets which align with the shear of the flow, and it is used for flow 
visualization. An infrared beam is fixed so that it reflects from the 
Kalliroscope at a point halfway between the ends of the cylinders. The 
intensity of the reflected beam forms the quantitative information for the 
experiment. A relatively high reflectance indicates that the platelets are 
aligned with a primarily azimuthal flow, i.e., the initial flow. A radial 
velocity component begins to grow at the transition to secondary flow, and 
some of the platelets intercept the beam edge on, resulting in a lowered 
reflectance. (9, ~ 1 ) 

Reference 9 describes our experimental protocol and explains how the 
control parameters were varied to acquire data. 

3. E X P E R I M E N T A L  R E S U L T S  

The Coriolis force stabilizes the fluid against the onset of secondary 
flow. We present some experimental results for the stability of the initial 
flow. We also show results for Coriolis effects on secondary flows. 

3.1.  S t a b i l i t y  o f  t h e  In i t i a l  F l o w  

Figure 1 shows relative reflectance data plotted as a function of Re for 
a constant value of the second control parameter, f2 = 1.5, at i /= 0.883. 
Each datum is a mean of reflectance measurements taken with both control 
parameters constant. The squares indicate data between which Re was 
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Relative reflectance data as a function of Re with r/= 0.883. 

quasistatically increased; the circles indicate quasistatic decrease between 
points. (References 9, 11, and 12 discuss the criterion for "quasistatic.") The 
large change in reflectance corresponds to the transition from initial to 
secondary flow. We take the value of Re corresponding to a 10% drop in 
reflectance from its upper to its lower asymptotic value to be the critical 
Reynolds number for the onset of instability, Rec. The determination of the 
asymptotic values of reflectance is somewhat uncertain, particularly at 
higher values of ~. This uncertainty contributes to the error in Re~. 
Figure 1 indicates that Re,. ~ 138 is greater for the nonzero value of f2 than 
Reco = 121.9, where Redo is the critical Reynolds number in the absence of 
a Coriolis force. 

Figure 2 shows a plot of the stability curve constructed from a series 
of relative reflectance versus Reynolds number plots as in Fig. 1. The 
ordinate represents the fractional change in the critical Reynolds number 
A = (Rec.-Reco)/Reco. The quantity A is known to greater accuracy than 
absolute values of the various fluid parameters entering into the Reynolds 
number. A > 0 indicates stabilization. Thus, Fig. 2 shows that the Coriolis 
force stabilizes the flow. Stabilization is quite pronounced even for small 
table rotation rates. For  example, Rec is twice Redo at f2 ~ 4.2. These values 
correspond to a ratio of the control parameters f2D/e)= 0,13; and f2D/2~Z 
0.08 Hz for a fluid with v = 0.01 Stokes. 

The symmetry of the system suggests that A should depend on the 
magnitude of f2 only, and not its direction; i.e., the change in the critical 
Reynolds number should be the same if table rotation is clockwise or 
counterclockwise. We have confirmed this result experimentally. The 
symmetry also explains the initial qualitative dependence of A on f2. The 
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Fig. 2. Fractional change in the critical Reynolds number versus 12 for small s with 
r/=0.883, v=0.11 S (squares), and v-0.011 S (circles). The curve is a best fit of our data for 
12 < 5 to A = k(22, k - 0.0558 _+ 0.0005. 

curve in Fig. 2 is a best fit of our  data  to A = kf22 at small values of f2. This 
is consistent with a Taylor  expansion of Re~ as a function of f2, where the 
odd-order  terms are zero due to symmetry.  The quadratic dependence of A 
on (2 is analogous to the initial dependence of the fractional change in the 
critical Rayleigh number  on f2 in rotat ing Rayleigh-B6nard convection, ~2) 
which is also symmetric  with respect to the direction of rotation. 

At approximately  s > 5, A no longer scales as f22. Instead, A increases 
monotonical ly ,  but  less rapidly. In a previous paper, we concluded that  
A asymptotical ly scales as Ta 2n, where Ta = 4f22 is the Taylor  number.  (9) 
This conclusion was based on data  with Ta less than about  400 (f2 < 10). 
We have subsequently taken data  up to f2 ,~22 (Fig. 3). The Ta 2/3 ((24/+) 
scaling does not  hold, and no simple power-law scaling is evident. At 
f2 ~ 22, Rec is close to seven times greater than Redo. 

We found that the strength of stabilization depends on the radius ratio 
r/. Stabilization is stronger for r /=  0.950 than for t /=  0.883. Our  results at 
both  radius ratios show that  initially A is quadrat ic  in f2. Results of Ning 
et al. ~ at r /=0 .75  also indicate initial quadrat ic  stabilization, which is 
weaker than stabilization for our  data at q =0.883.  This suggests that  
stability increases monotonica l ly  with t / ove r  the range of q = 0.75~).95. 

3 .2 .  D i r e c t  T r a n s i t i o n  t o  T u r b u l e n c e  

The Coriolis force alters the velocity fields, both above and below the 
transit ion from initial flow. In this subsection we discuss experimental 
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Fig. 3. A versus #2 wi th  ~/= 0.883. The curve is the same fit as Fig. 2. 

results concerned with the effect on secondary flows. In Section 4 we 
consider numerical results for the effect on the initial flow. 

Above the transition, at small/2, visual observation indicates that the 
Taylor vortices are tilted and the flow appears time-independent. We call 
this dynamical regime tilted Taylor vortex flow, TTVF, to distinguish it 
from ordinary Taylor vortex flow. Figure 4a is a plot of both the mean 
relative reflectance (as in Fig. 1) and the variance of the reflectance versus 
the Reynolds number, for #2 ~ 1 (Rec~ 129). There is no significant change 
in the variance at the transition to TTVF from the time-independent initial 
flow, which we interpret as an indication that TTVF is time-independent. 
At Re ~ 144 the variance rises sharply, and coincides with our observation 
of the onset of time-dependent wavy vortex flow on the tilted vortices. 

Reflectance data in Fig. 4b make the transition to secondary flow 
appear broader and less sharp than the transition in Fig. 4a. Visual 
observation indicates that the secondary flow is highly turbulent for 
#2=6.9, the value for Fig. 4b. The Taylor vortices still exist, but 
they appear to be mixing chaotically. Much of the spatial periodicity 
characteristic of ordinary Taylor-Couette flow, even in the turbulent 
regime, is gone. The coincidence of the rise in variance with the drop in 
reflectance shows that there is a direct transition to time-dependent flow at 
the onset of secondary flow. In other words, a sufficiently strong Coriolis 
force eliminates the ordinary sequence of regimes leading to turbulence, 
including wavy vortex and modulated wavy vortex flow. 

In Fig. 5 we plot Re,/Re C against #2 for data with ~1 = 0.883, where Re, 
is the critical Reynolds number for the onset to time-dependent flow. For 
all ~2 >~ 5.3, Ret/Rec= 1, indicating a direct transition to time dependence. 
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Fig. 4. (a) Relative reflectance (circles) and variance in the relative reflectance (triangles) 
plotted against Re for 12 = 1 with r/= 0.883; (b) the same for 12 = 6.9. For clarity, only the 
points between which Re was quasistatically decreased are shown. 

We have fit a line to the data where the ratio is greater than one in order 
to extrapolate this value of t2. Interestingly, t2 ~ 5.3 for the break from the 
region of quadratic scaling (Fig. 3). 

4. N U M E R I C A L  R E S U L T S  F O R  T H E  I N I T I A L  F L O W  

In  this sec t ion  we d e t e r m i n e  the  f i r s t -o rder  c o r r e c t i o n  to  C o u e t t e  flow, 

wh ich  resul ts  f r o m  the  Cor io l i s  force,  by e x p a n d i n g  in p o w e r s  of  t2 to 
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derive approximate equations for the initial flow. We present numerical 
results for the solution to these equations. We note that Brand (14) has 
independently carried out the derivation of the approximate equations. 

Figure 6 is a defining diagram for a coordinate system when the 
Couette system is rotating about an axis orthogonal to the axis of the 
cylinders. The x axis is taken as the axis of rotation for the system, and the 
z axis as the axis of rotation for the inner cylinder. This choice of 
coordinates allows for the use of cylindrical coordinates to describe 
position and velocity in the annulus. The rotation vector of the system f~D 
can be written in cylindrical coordinates as 

~2e2 = f2o(P cos ~b - d sin ~b) (1) 

where 2, i, and ~ are unit vectors in the x, radial, and azimuthal directions, 
respectively. If we adopt a rotating frame of reference in which the Couette 
system is stationary, the continuity and steady-state Navie~Stokes 
equations are 

V ' u = 0  (2) 

1 
u - V u  = - V P  + Ree ( V 2 u  - -  2 ~  x u) (3) 

Equations (2) and (3) are written in terms of dimensionless variables, 
where we assume a characteristic length scale L = d ,  the gap size, and 

Fig. 6. Defining diagram for the coordinate system. The z axis is out of the paper. 
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velocity scale U=o)R1, the inner-cylinder velocity. R e = ~ o R l d / v  is the 
Reynolds number  and ~ = ~DdZ/v  is the dimensionless rotat ion vector of 
the rotat ing reference frame. P represents an effective dimensionless 
pressure that  includes the centrifugal force, which is equal to a scalar 
potential. The procedure of subsuming the centrifugal force in P implies 
that  this force plays no role in the dynamics of  the system. 2 This is 
analogous to subtracting out  the hydrostat ic  head due to gravity. The 
conditions for this procedure to be valid are that the pressure does not  
appear  explicitly in the boundary  conditions and the density of the fluid is 
constant.(1 

In the infinite-cylinder approximation,  with the outer cylinder fixed, 
the boundary  conditions for Eqs. (2) and (3) are 

inner cylilnder: r = 7/(1 - ~/) 

u~=0,  u~=  1, uz=O 
(4) 

outer cylinder: r = 1/(1 - r/) 

u r = 0 ,  u ~ = 0 ,  u_.=0 

where ~ = RI/R2 is the radius ratio. 
Couette  flow, the classical initial flow in the absence of the Coriolis 

force, is azimuthal,  with the velocity and pressure dependent only on radial 
position, 

Uzo = Uro = 0 (5) 

U~o = Ar  + B/r (6) 

dP~ = u~~ (7) 
dr r 

where A and B are constants  determined by the boundary  conditions. 3 
We carry out the power expansion in terms of small (2 by assuming 

that  the components  of the velocity and the pressure for the initial flow are 
each corrected by a small term of order f2, 

2 We have checked experimentally that the centrifugal force does not affect the dynamics of 
the flow, by measuring the angle of the tilt in TTVF for apparatus radially on center and 
one off center. We found that the angle does not depend on the radial position or orientation 
of the system. In addition, Ning et al. I j3) found that the stability behavior does not change 
for radially centered and noncentered systems. 

3 In terms of dimensionless variables, where u~0 has been scaled by ~oR~, r has been scaled by 
d=R2--R~, and ~I=RjR2, A = --t//(1 +r/) and B=q/[(1-  r/)(1- r/z)]. 



922 Wiener et  al. 

L/z ~- b/z0 -~- Ob/zl = ~'~Uzl (8) 

Ur = Ur0 + QU,.1 = QUrl (9) 

U~ = UO0 + QU~l (10) 

P = Po + f2P~ (11) 

These equations are then substituted back into the continuity and Navier- 
Stokes equations, Eqs. (2) and (3). The infinite-cylinder approximation 
implies that all z dependence is negligible. Using Eqs. (1) and (8) (10), we 
find that the cross product in the Navier-Stokes equation is 

- 2~ x u = - 2 0 (  - ? r  sin ~b - df2u-1 cos ~b 

-}- Z~'~Url sin ~b + ~s cos ~b 

+ 2U~o cos ~b) (12) 

Only the last term on the right-hand side of Eq. (12) is first order in Q. All 
other terms are second order. Thus, the first-order effect of the Coriolis 
force is given by the interaction of f2 and the azimuthal initial flow. The 
term which represents this interaction appears ih the axial component of 
the Navier-Stokes equation. This suggests that the axial velocity is the only 
nonvanishing first-order correction term to the initial flow. Thus we make 
the following Ansatz, which is justified a posteriori, 

u~l = u ~  =P1 = 0  (13) 

After substituting Eqs. (8)-(11) into Eqs. (2) and (3) and neglecting 
terms of second order, the continuity equation and the radial and 
azimuthal components of the Navier-Stokes equation are satisfied by 
classical Couette flow, Eqs. (5)-(7), and Eq. (13). The only remaining 
component of the Navier Stokes equation is 

Uoo Ou-I 1 /02u.l 1 Ou-i 1 02b/zl ) 
r O(J Re~-~r2~+r--~r~-}r2cg~ 2 2u4~ c~ ~b (14) 

Equation (14) can be satisfied by an axial velocity of the form 

b/zl = f ( r )  cos ~b + g(r) sin ~b (15) 

where f ( r )  and g(r) are functions of r alone. The cos ~b dependence of th~ 
Coriolis force term in Eq. (14) requires that the higher harmonics of U~l are 
not excited. Substituting Eq. (15) into Eq. (14) and equating the coefficients 
of cos ~b and sin ~b, respectively, yields two second-order, coupled, linear, 
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inhomogeneous, ordinary differential equations. If we denote differentiation 
with respect to r by a prime symbol, then 

f '  f Re 
f"-t- r r 2 r u~~176 (16) 

g" + g' g Re 
t - - 7 7  +-r u~of =O {17) 

where Uoo is the azimuthal (and only nonzero) component of the classical 
Couette initial flow. In order to satisfy the boundary conditions, Eq. (4), f 
and g must each go to zero at the inner and outer cylinders, which gives 
four boundary conditions for Eqs. (16) and (17). The solution to these 
equations gives the first-order correction to the initial flow, when 
substituted into Eq. (15) and multiplied by/2.  

We solve Eqs. (16) and (17) using a shooting method for boundary 
value problems, which involves iteration of a standard fourth-order Runge- 
Kutta integration until the boundary values agree to within an arbitrary 
tolerance, which we chose as 10-1~ (15)'4 The quantity uzl can be expressed 
in a more physically meaningful form as 

uz,=a(r ) c o s [ ~ + a ( r ) ]  (18) 

where a(r) = [-f2(r) + g2(r)]l/2 is the amplitude and 6(r) = 
tan-l[g(r)/ f(r)] is the phase of Uzl. In Fig. 7 we plot a(r) and 6(r)/rc as a 
function of the radial position in the annulus for Re = 128, which is very 
near the critical Reynolds number for the onset of Taylor vortices a t /2  = 1. 
The amplitude is relatively strong across the middle of the gap, and zero 
at the inner and outer cylinders as required by the boundary conditions. 
The maximum amplitude is offset toward the inner radius and is less than 
10% of the value of the inner-cylinder velocity, e)R~ (assuming / 2 =  1). 
This suggests that second-order velocities may be less than 1% of coR1 for 
these values of Re and/2.  The position of the maximum is not surprising, 
since the azimuthal velocity which interacts with the rotation of the system 
to produce a Coriolis force is greatest at the inner cylinder. The phase has 
a relatively flat profile, and the maximum phase (in this case almost ~/4) 
has nearly the same radial position as the maximum amplitude. 

Figure 8 is a plot of the maximum amplitude ama x against Re at a 
constant/2.  Figure 8 shows that a . . . .  which is scaled by the inner cylinder 

The solutions were checked by numerically taking the derivatives o f f  and g point by point, 
and substituting the results back into the differential equations. Typically the second 
derivatives given by the equations agree with the numerical second derivatives within a few 
percent. 



velocity,  increases with decreasing Reynolds  number. To  recover the 
physical (i.e., d imens ioned)  m a x i m u m  amplitude,  one must  multiply am~x 
by coR1, which vanishes as Re goes to zero. The data indicate that ama x 
increases less rapidly than l /Re as Re decreases. Thus, the physical 
amplitude vanishes at Re = 0, as it must.  The inverse relationship between 
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Fig. 7. (a) Plot of a(r) versus the radius r; (b) 5(r)/~z versus r. The inner- and outer-cylinder 
radii, q(1-t/)=7.55 and 1/ ( l - t / ) -8 .55 ,  are scaled to 0.883 and 1, respectively, and a(r) is 
scaled by the inner-cylinder velocity, coR~. 
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ama,, and Re is very intriguing in light of the linear relationship between 
area • and f2. It shows that already in the initial flow, the two control 
parameters Re and f2 have competitive effects. This result is similar to 
competitive effects between the control parameters which we are observing 
in our ongoing investigation of secondary flow regimes. 

5. C O N C L U S I O N  

Taylor-Couette flow subject to a Coriolis force is a novel variant of 
this fundamental system. The stability of the initial flow is markedly 
increased by the Coriolis force. At a high enough rotation rate f2, the initial 
flow bifurcates directly to strong spatiotemporal turbulence. The transition 
to turbulence no longer involves singly- and doubly-periodic intermediate 
regimes as in ordinary Taylor-Couette flow. 

Numerical results for an approximate solution to the initial flow offer 
clear, experimentally testable predictions. These results also constitute a 
first step toward a linear stability analysis of the initial flow. 

A C K N O W L E D G M E N T S  

We wish to express our sincere thanks to Dr. Randall Tagg for 
stimulating discussions which led to the numerical results presented in this 
paper. We would also like to thank Profs. Helmut Brand, Guenter Ahlers, 



926 Wiener et  al.  

and  D a v i d  Canne l l  a n d  Li  N i n g  for t hough t fu l  exchanges  on  ou r  inves t iga-  

t ion  and  the i r  para l le l  work .  Th is  research  is s u p p o r t e d  t h r o u g h  N S F  g ran t  

D M R - 8 8 1 5 8 0 3 .  

R E F E R E N C E S  

1. D. J. Tritton, Physical Fluid Dynamics (Clarendon Press, Oxford, 1988). 
2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 

1961); Proc. Am. Acad. Arts Sci. 86:323 (1957). 
3. D. Fultz, Y. Nakagawa, and P. Frenzen, Phys. Rev. 94:1471 (1954). 
4. H. T. Rossby, J. Fluid Mech. 36:309 (1969). 
5. G. Kfippers and D. Lortz, J. Fluid Mech. 35:609 (1969). 
6. R. M. Clever and F. H. Busse, J. Fluid Mech. 94:609 (1979). 
7. J. J. Niemela and R. J. Donnelly, Phys. Rev. Lett. 57:2524 (1986). 
8. R. C. Di Prima and H. L. Swinney, in Hydrodynamic Instabilities and the Transition to 

Turbulence, H. L. Swinney and J. P. Gollub, eds. (Springer-Verlag, Berlin, 1985). 
9. R. J. Wienes, P. W. Hammer, C. E. Swanson, and R. J. Donnelly, Phys. Rev. Lett. 64:1115 

(1990). 
10. Proceedings of the Conference on multiparameter Bifurcations, Contemp. Math. 56:277 

(i986). 
11. T. J. Walsh, W. T. Wagner, and R. J. Donnelly, Phys. Rev. Lett. 58:2543 (1987). 
12. K. Park, G. L. Crawford, and R. J. Donnelly, Phys. Rev. Left. 47:1488 (1981). 
13. L. Ning, G. Ahlers, and D. S. Cannell, J. Star. Phys., this issue. 
14. H. Brand, private communication. 
15. S. D. Conte and C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 

1980). 


